Institute of Plant Biology Laboratory for Molecular Plant Physiology POSTECH-UZH Cooperative Laboratory University Zurich

- What are heavy metals

- The pathway of heavy metals from the root to the shoot

- Modulating heavy metal uptake at the root level

- The role of the waquole in heavy metal accumulation

Modulating heavy metal contents and allocation in plants

What is a heavy metal?

Heavy metals are defined as those elements which have a density of more than 5 g / cm³. We use them for industrial products but many of them are also required for biological functions

Essentiel heavy metals

Iron Cobalt Copper Molybdenum Nickel Zink

Not required heavy metals Lead Cadmium Arsenic

What are the problems related to heavy metals?

For plants: Insufficient uptake of essential heavy metals Uptake of two large amounts of heavy metals Uptake of toxic heavy metals

 $\mathsf{QuickTime}^{{}^{\mathrm{TM}}}$ and a TIFF (Uncompressed) decompressor are needed to see this picture.

What are the problems related to heavy metals?

For plants: Insufficient uptake of essential heavy metals Uptake of two large amounts of heavy metals Uptake of toxic heavy metals

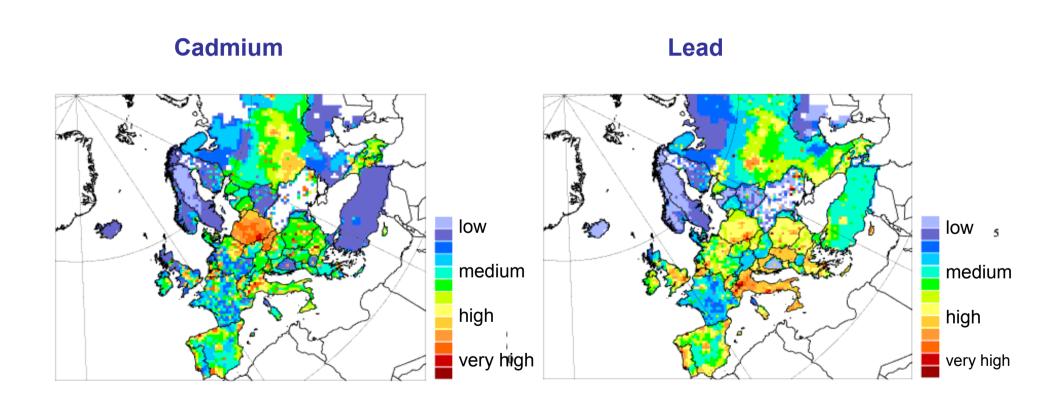
For humans: Insufficient amounts of essential heavy metals To strong chelation of essential heavy metals Contamination of soils with toxic heavy metals

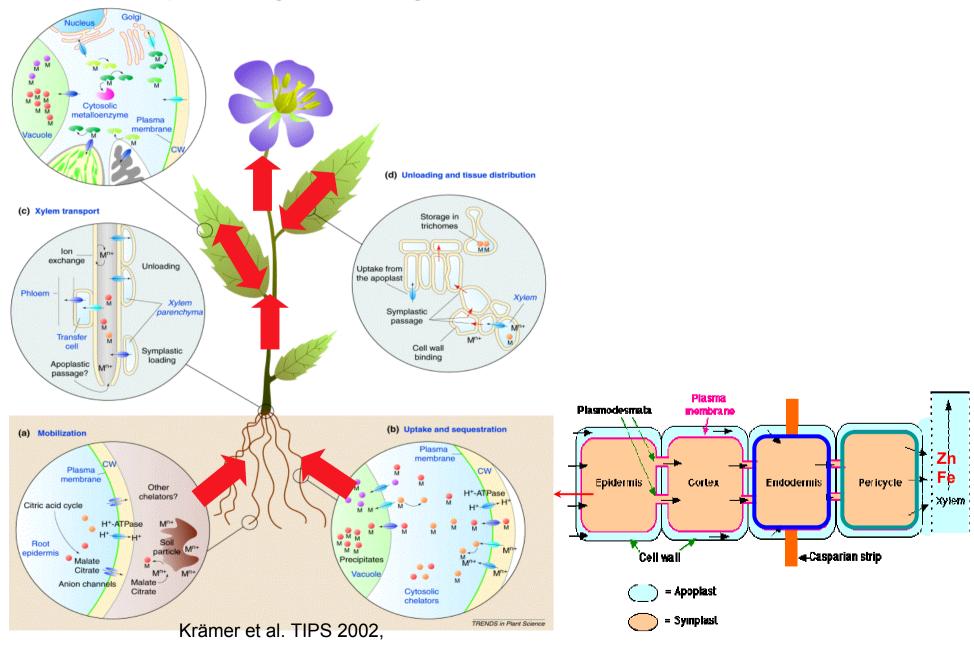
What are the problems related to heavy metals?

For plants: Insufficient uptake of essential heavy metals Uptake of two large amounts of heavy metals

Uptake of toxic heavy metals

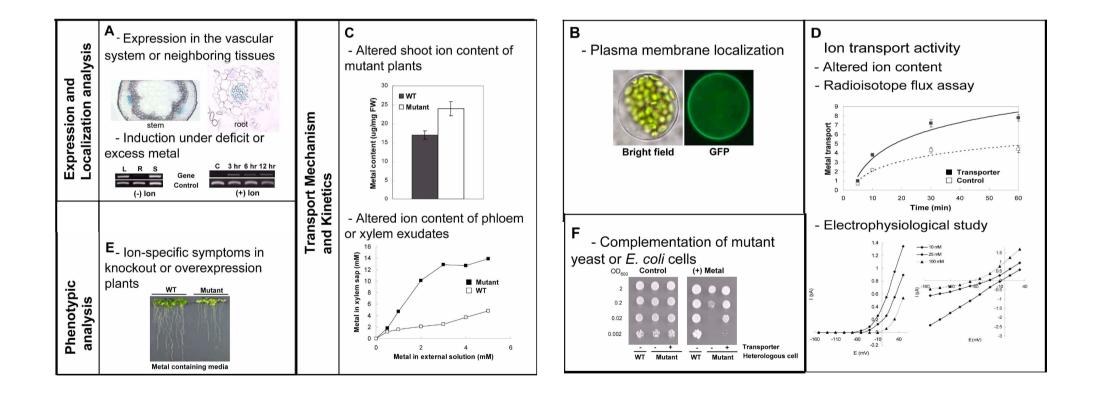
For humans: Insufficient amounts of essential heavy metals To strong chelation of essential heavy metals Contamination of soils with toxic heavy metals


Approaches using breeding and plant biotechnology: Safe food Phytoremediation Biofortification


An example for a heavy metal: Cadmium

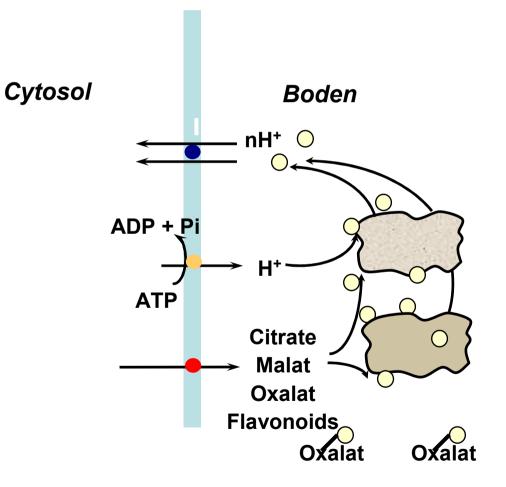
- Interacts with SH groups
- Causes oxidative stress
- In humans it damages the kidney, immunodeficiency and it is carcinogenic

Is heavy metal contamination a problem in Europe?

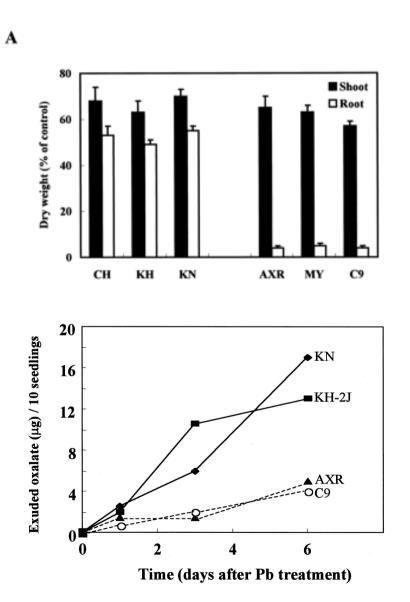


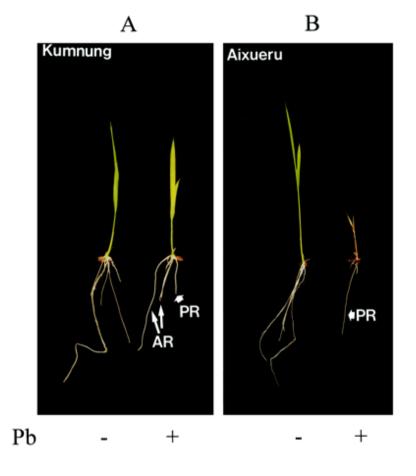
(e) Trafficking and sequestration pathway of heavy metals from the root to the shoot

Tools to study plant transport processes


Whole plant level

Single cell level



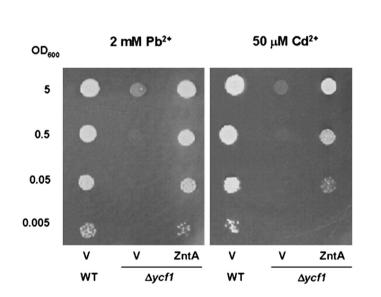

The soil-root interaction

Root exudates may either immobilze heavy metals or rend them more soluble

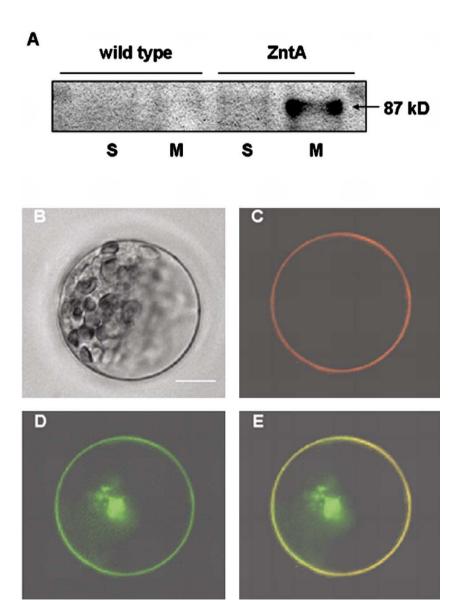
Screening rice varieties for Pb resistance

Lee et al. Plant Physiol 2002

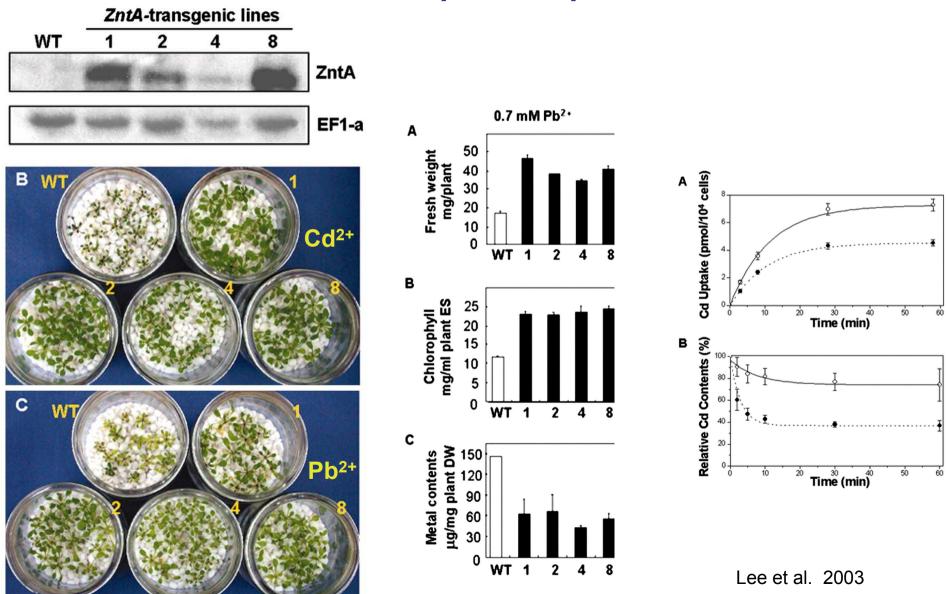
IRT1 is the major Fe²⁺ uptake transporter in roots but is also the major Cd²⁺ transporter

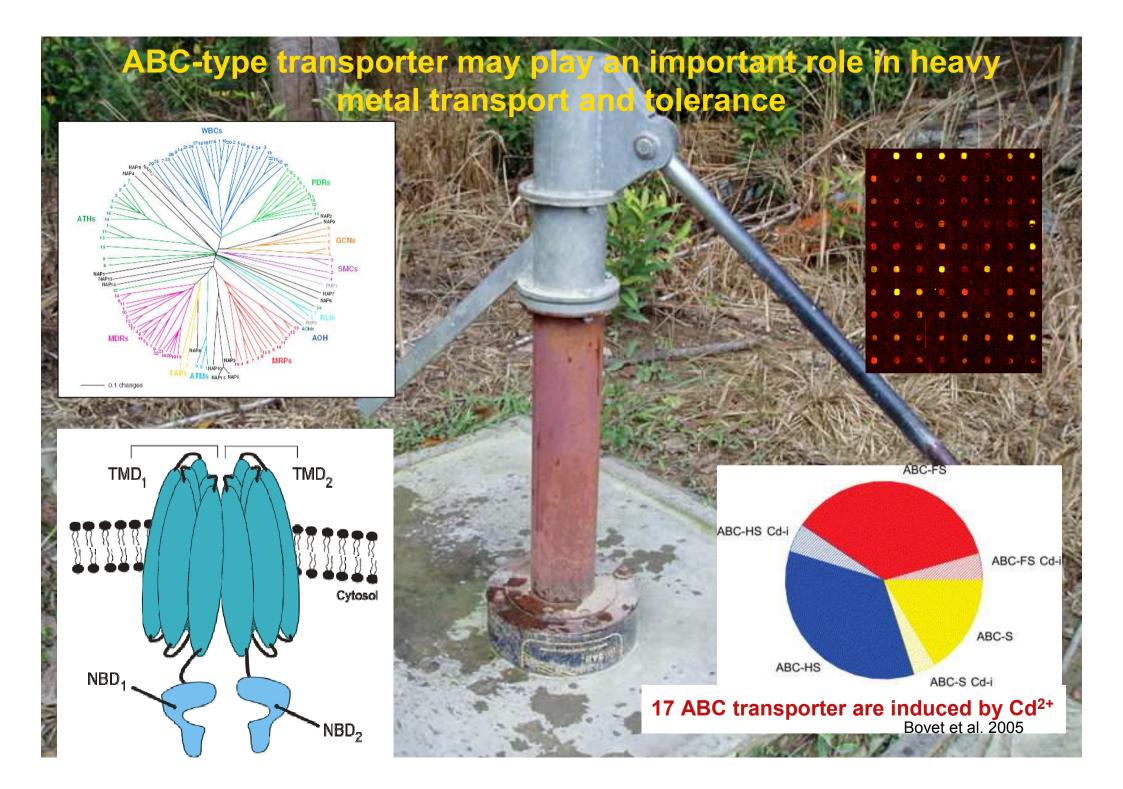

QuickTimeTM and a TIFF (Uncompressed) decompress are needed to see this picture.

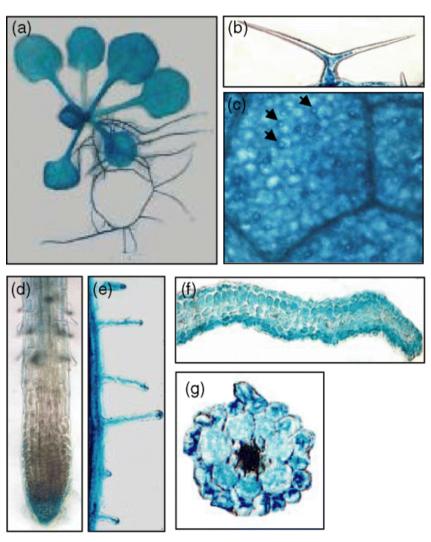
QuickTime[™] and a TIFF (Uncompressed) decompress

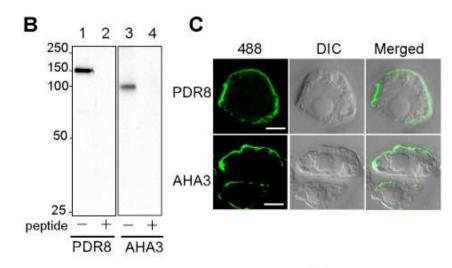

QuickTime™ and a TIFF (Uncompressed) decompresso are needed to see this picture.

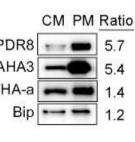
Henriques et al. 2002

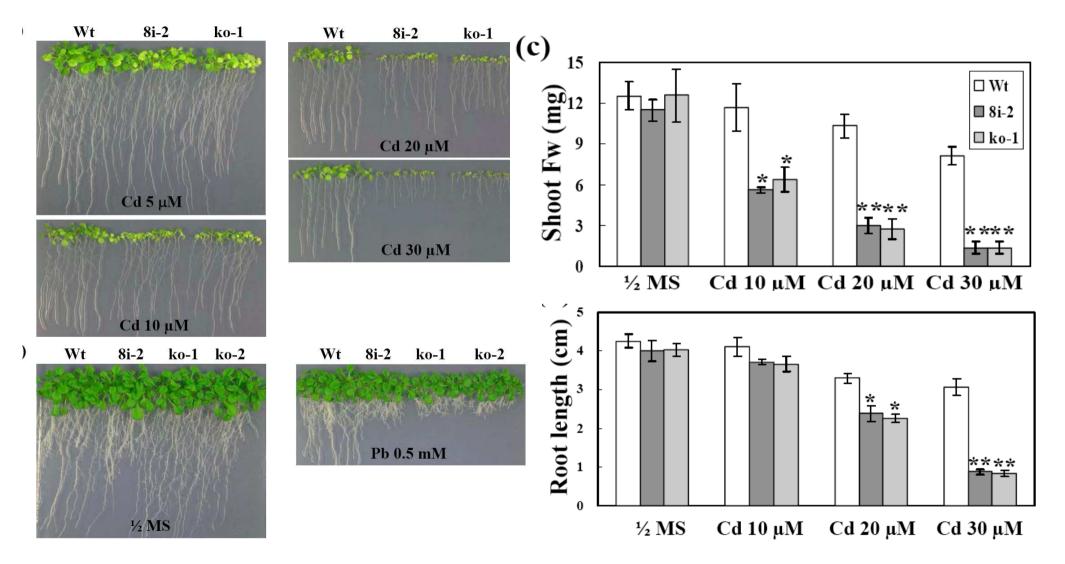

A biotechnological approach to decrease heavy metals in plants: Expression of a bacterial cadmium transporter



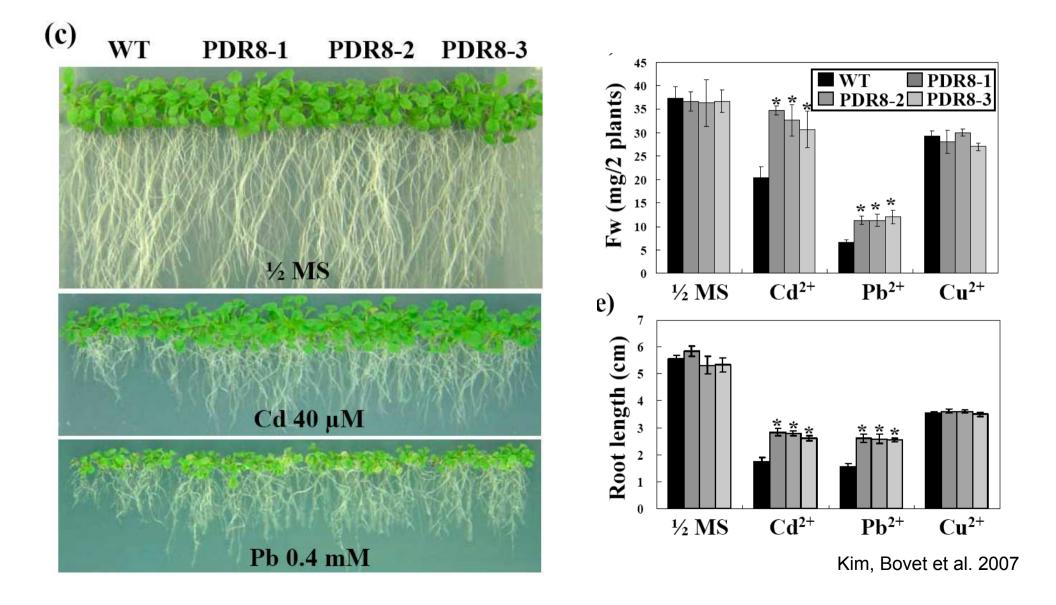

Expression of a bacterial cadmium transporter to reduce cadmium uptake in plants


The ABC-type transporter AtPDR8 is expressed mainly in epidermal cells and localized i the plasma membrane

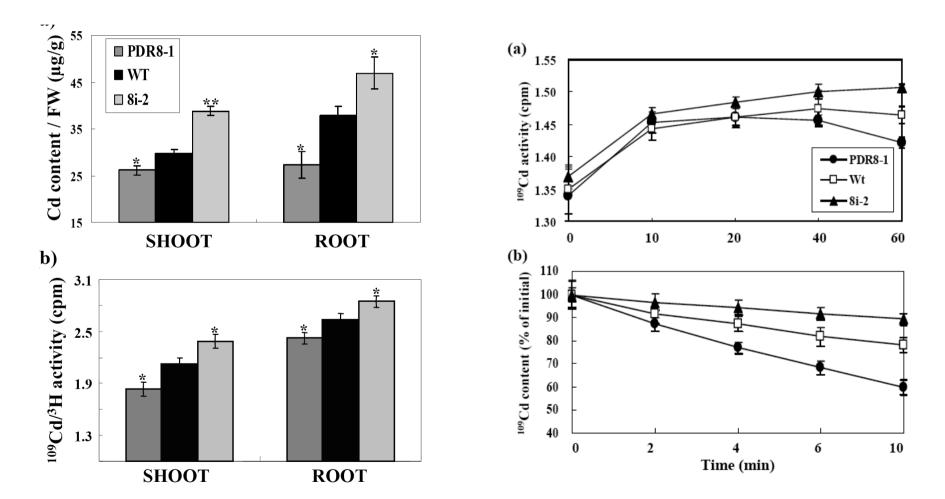

Α


Kim, Bovet et al. Plant J. 2007

	Leat Stempt	ower silique Root
PDR8		
АНАЗ		



Deletion mutants of AtPDR8 are sensitive to cadmium and lead



Kim, Bovet et al. 2007

AtPDR8 overexpressing plants are more tolerant to cadmium and lead

AtPDR8 acts as a cadmium efflux pump

Kim, Bovet et al. 2007

AtPDR8 is involved in heavy metal and biotic stress: Where is the link?

Rapid Paper

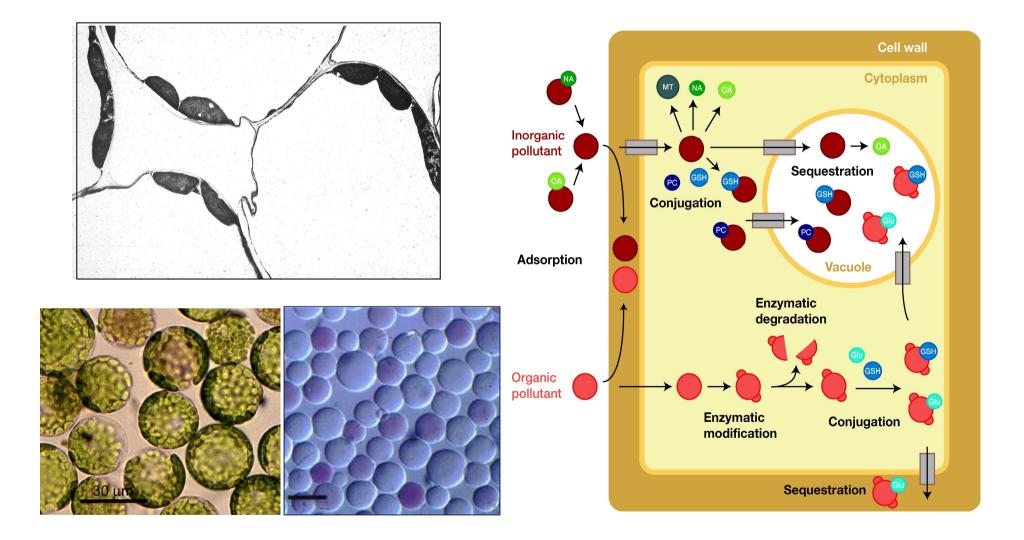
Loss of AtPDR8, a Plasma Membrane ABC Transporter of *Arabidopsis* thaliana, Causes Hypersensitive Cell Death Upon Pathogen Infection

Yoshihiro Kobae¹, Tetsuro Sekino¹, Hirofumi Yoshioka², Tsuyoshi Nakagawa³, Enrico Martinoia⁴ and Masayoshi Maeshima^{1,*}

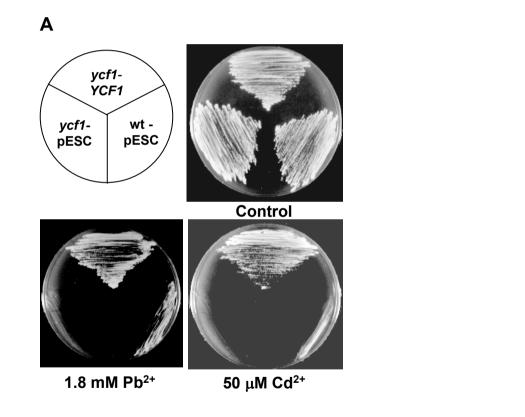
The Plant Cell, Vol. 18, 731–746, March 2006, www.plantcell.org © 2006 American Society of Plant Biologists

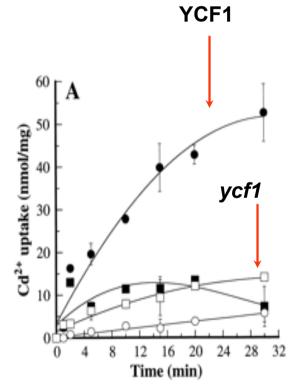
Arabidopsis PEN3/PDR8, an ATP Binding Cassette Transporter, Contributes to Nonhost Resistance to Inappropriate Pathogens That Enter by Direct Penetration

Mónica Stein,^a Jan Dittgen,^b Clara Sánchez-Rodríguez,^c Bi-Huei Hou,^a Antonio Molina,^c Paul Schulze-Lefert,^b Volker Lipka,^d and Shauna Somerville^{a,1}

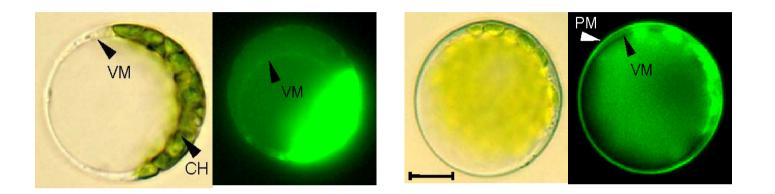

The Plant Journal (2007) 50, 207–218

doi: 10.1111/j.1365-313X.2007.03044.x


The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance


Do-Young Kim¹, Lucien Bovet², Masayoshi Maeshima³, Enrico Martinoia^{1,4,†} and Youngsook Lee^{1,*,†}

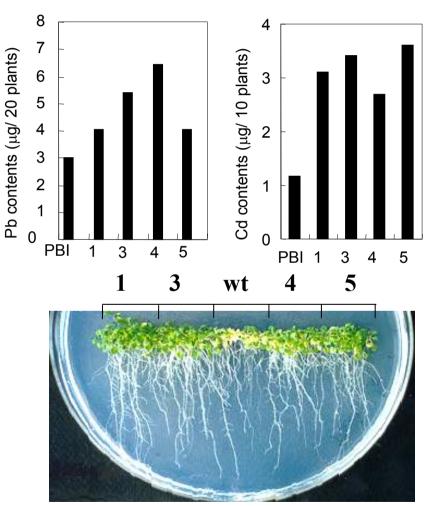
Exploring the role of the vacuole to increase heavy metal allocation and accumulation



Is vacuolar transport a limiting factor for heavy metal tolerance? Expression of the yeast bis-GS-Cd transporter YCF1 in plants

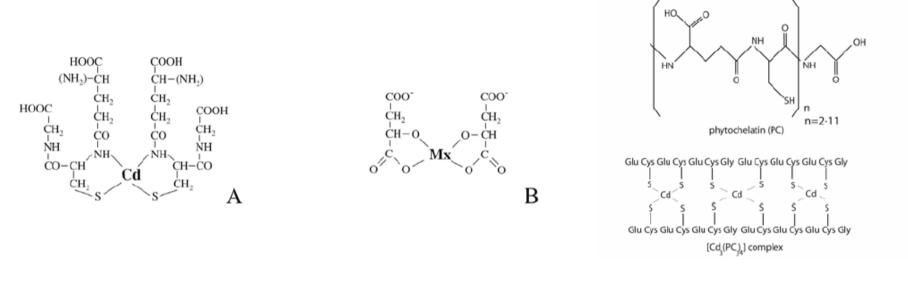
Arabidopsis expressing YCF1 exhibit a higher GS₂-Cd transport

Table 1 Uptake of GS-conjugated cadmium and reduced glutathione into intact vacuoles isolated from wild-type and *YCF1*-transgenic plants


Compound	Wild-type plants, nmol/ml vacuole/min	YCF1-transgenic plants, nmol/ml vacuole/min		
Cd + GSH	1.45 ± 0.25	5.30 ± 0.49		
GSH	0.15 ± 0.11	0.20 ± 0.06		

Substrates tested were 200 μ M GSH containing ³H-labeled GSH with or without 200 μ M CdCl₂. Values shown are means \pm s.e.m. (n = 10) from two independent experiments, each with five replicates.

Arabidopsis expressing YCF1 are more tolerant to arsenic, lead and cadmium

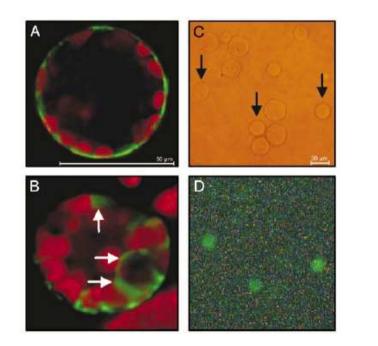


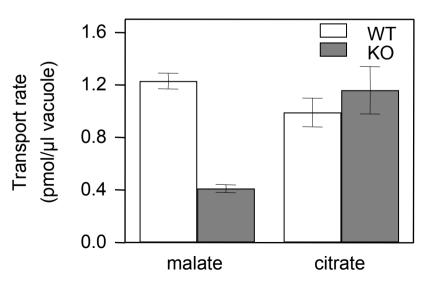
1/2 MS + 50 mM As(V)

1/2 MS + 1 mM Pb²⁺ Song et al. Nature Biotech. 2003

Can the vacuolar sink be increased byby increasing the amount of chelators?

Glutathion-Cd

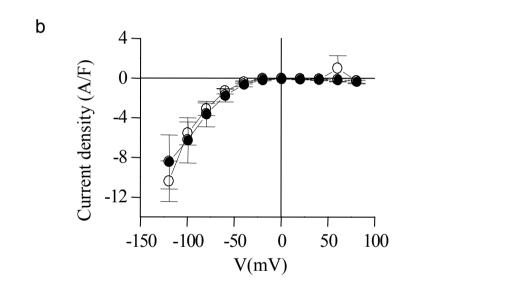

Malat-Mx


Phytochelatin

Malate is a central metabolite in plants:

Metabolic pathways: Kebs cycle, glyoxylate cycle, CO_2 fixation, malate decarboxylation Store for CO_2 and reduction equivalents Important osmolyte (stomata, CAM, C4) pH state Chelator (intracellular (mainly zinc) and extrcellular (aluminum tolerance)

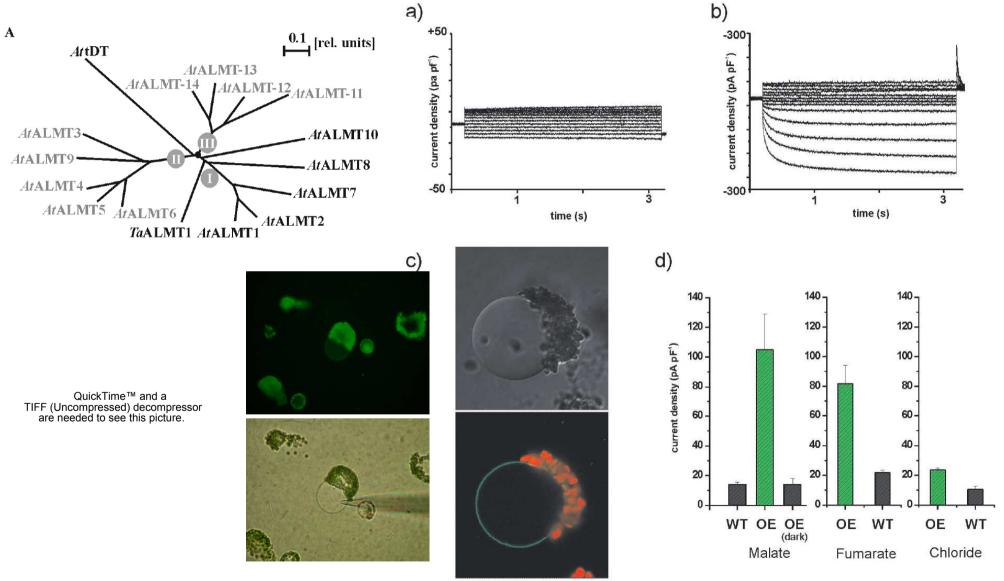
A homologue of the renal Na+/dicarboxylate transporter is the vacuolar malate transporter


Emmerlich et al. 2003

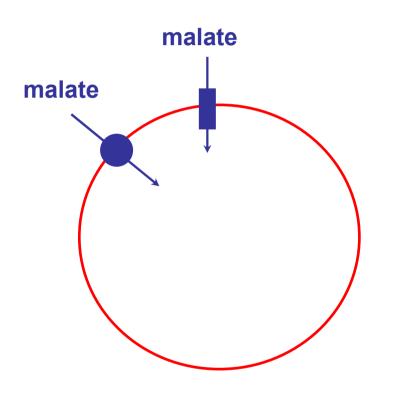
AttDT is the vacuolar malate transporter, but not the the malate channel

Current densities in wt and attdt KO are similar

The currents detected are due to malate


TIFF (Uncompressed) decomp

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.


> QuickTime™ and a TIFF (Uncompressed) decompres

The vacuolar malate channels are members of the ALMT family

Kovermann, Meyer et al., Plant J. 2007

Impairing vacuolar malate transport has no effect on heavy metal resistance

E N T	N A M								
R Y	E								
17	a-tocopherol	0.957	1.00 ± 0.2662	7.597	0.1036	7.938 ±	0.495		
21	maltitol	0.814	1.00 ± 0.1757		0.9447		0.196		
23	maltose MX2	0.563	1.00 ± 0.0474		0.6362		0.152		
25	trehalose	0.446	1.00 ± 0.057	0.5429	0.0323	<u>1.219</u> ±	<u>0.058</u>		
27	trehalose	0.830	1.00 ± 0.070		0.0538		0.072		
29	maltose MX1	0.443	1.00 ± 0.1082		0.5822	1.53 ±	0.605		
31	sucrose	11.85	1.00 ± 0.0688			1.152 ±	0.041		
47	18:0	9.461	1.00 ± 0.0734	8.557	0.2749		0.034		mu a in a aital I
59	myo-ino	8.315	1.00 ± 0.0353		0.0217		0.142	\rightarrow	myo inositol +
63	16:0	5.326	1.00 ± 0.0297		0.3572		0.037		-
69	gluconic	0.133	1.00 ± 0.0641 1.00 ± 0.0614	0.1213	0.3918		0.079		
77	D-isoascorbic	0.227 0.227				1.118 ±	0.069		
81	L-ascorbic sorbitol/galactitol	0.227	1.00 ± 0.0612 1.00 ± 0.3011			1.119 ± 0.615 ±	0.069		
87 89	mannitol	0.214	1.00 ± 0.3011			0.604 ±	0.153		
89 97	glc MX1	16.35	1.00 ± 0.0998			1.728 ±	0.133		
99	gal MX1	0.144	1.00 ± 0.0428		0.0703		0.025		
101	man MX	0.073	1.00 ± 0.0652		0.0835	1.17 ±	0.053		
101	fru MX2	1.825	1.00 ± 0.1094		0.0099	<u>2.22</u> ±	0.187		glucose/fructose +
105	fru MX1	2.475	1.00 ± 0.1137		0.0102		0.192		glucose/iluciose ·
107	quinic	1.269	1.00 ± 0.26			3.817 ±	0.615		
109	dehydroascorbic	0.927	1.00 ± 0.0239			1.107 ±	0.03		
111	dehydroascorbic	2.238	1.00 ± 0.0233	2.4977	0.0167	1.116 ±	0.033		
119	citric	2.381	1.00 ± 0.1409	3.8215	0.0105	1.605 ±	0.09	\rightarrow	citric acid +
123	shikimic	4.489	1.00 ± 0.1628	13.142	0.2107	2.927 ±	0.534		
125	shikimic	0.119	1.00 ± 0.1715	0.3728	0.2112	3.14 ±	0.553		
155	rhamnose MX1	0.249	1.00 ± 0.0867	0.3609	0.0304	<u>1.448</u> ±	<u>0.118</u>		
157	ribose MX	0.065	1.00 ± 0.0369	0.0751	0.0129	<u>1.156</u> ±	<u>0.034</u>		
161	arabinose MX	0.215	1.00 ± 0.0483	0.2204	0.6501		0.023		
163	arabinose MX	0.103	1.00 ± 0.04	0.1146		1.109 ±	0.031		
171	xylose MX1	0.046	1.00 ± 0.0481	0.0501	0.2674	1.08 ±	0.046		
181	threonic	0.808	1.00 ± 0.0469		0.0133		0.033		
189	pyroglutamic	35.41	1.00 ± 0.0982			0.968 ±	0.073		
191	aspartic 3	0.59	1.00 ± 0.2711	0.4663	0.5602	0.79 ±	0.19		malic/succinic acid -
203 205	malic citramalic	2.356 0.085	1.00 ± 0.0329 1.00 ± 0.041	1.5738 0.046	0.0021		<u>0.133</u> 0.051		fumaria/appartia agid ()
205	homoserine 3	0.085	1.00 ± 0.041		7E-07 0.8368		0.45		fumaric/aspartic acid (-)
207	threonine 3	1.229	1.00 ± 0.1004 1.00 ± 0.1097	1.5553	0.2251		0.45		
225	serine 3	4.646	1.00 ± 0.0593			1.200 ±	0.137		
227	fumaric	84.38	1.00 ± 0.0221	81.684	0.4944		0.043		
231	glyceric	1.23	1.00 ± 0.0578		0.5034		0.036		
235	succinic	2.885	1.00 ± 0.0219			0.555 ±	0.028		
239	glycine 3	18.28	1.00 ± 0.1164		0.0235		0.217		
245	proline 2	0.679	1.00 ± 0.0734		0.0192		0.133		
247	isoleucine 2	0.434	1.00 ± 0.1115		0.9605		0.23		
249	glycerol	0.503	1.00 ± 0.0453	0.5154		1.024 ±	0.04		
251	phosphoric 3	1.767	1.00 ± 0.2751	1.9041	0.811	1.078 ±	0.12		
257	valine 2	1.911	1.00 ± 0.0971	2.0916	0.7796	$1.094 \pm$	0.309		alanina/alvoina +
259	alanine 2	3.797	1.00 ± 0.1242	9.417	0.0047	<u>2.48</u> ±	<u>0.18</u>		alanine/glycine +

University Zurich

Lucien Bovet Bo Burla Simona Capaul Stefan Hörtensteiner Markus Klein Peter Kovermann **Stephan Meyer Reka Nagy** Sonia Plaza Maja Schellenberg **Thomas Schneider** Won-Yong Song Sujeound Su

University Pohang Youngsook Lee Joohyun Lee Do-Young Kim Jiyoung Park Won-Yong Song

University Kaiserslautern Ekkehard Neuhaus Vera Emmerlich Markus Hurth

VPI Köln Csaba Concz Rossanna Henriques University Gent

iri Friml

Kamil Ruz

Johann Weber

Universität Heidelberg Ute Krämer

University Dundee Charles Brearley