<u>Agriculture, Climate Change: can we</u> produce food without greenhouse gases?

Peter Kuikman

In short ..

- Public and scientific awareness
- Trends in agriculture and emissions – why care?
- Emissions of greenhouse gases and mitigation options
- Assessment of effect & regions
- Conclusions

Climate Change and agriculture

Climate Change and agriculture

5 statements

- Global livestock doubles in 50 years
- Livestock uses scarce resources (land, water, energy)
- Livestock has major impact on climate change
- Replace consumption of meat with vegetarian diet and reduce emissions GHG
- Consumers and consumption patterns count

Livestock's Long Shadow Environmental Issues and Options

- Awareness
- Diagnoses
- Hypotheses
- Design of solutions

FAO, Steinfeld et al. (2006)

Global Anthropogenic Methane Emissions: 1860-1994 (Stern & Kaufmann)

Year

[IPCC, 2001]

Contribution of livestock sector to GHG emissions

(Source: FAO, 2006. Emissions per year in 10^9 ton CO₂ eq.)

- CO₂ Total 24.0 ->
- N₂O Total 3.4 ->
- Livestock 0.16 (< 1%) CH₄ Total 5.9 -> Livestock 2.2 (37%) Livestock 2.2 (65%)
- And 4.5 CO₂-eq land-use with major uncertainties and difficult to attribute to sectors and activities

Many contributions in the food chain

Why care?

- Human population keeps growing
- Welfare of human society increases and diets change
- Fossil fuel is non-infinite and expensive source and causes climate change requiring more biomass for bioenergy and biorefinery
- Area for agriculture declines (soil degradation, erosion, industry)
- Food security deminishes attention (political, scientific) for primary production

Global production of fertilizer (1900 – 2100)

Erisman et al., 2008

What 'can' or really what 'need' agriculture do?

- Agricultural production still growing
- No decoupling of growth and emissions
- Interventions required for effective mitigation

EU policy agenda

Challenges from many objectives and societal needs

- Food security
- Public health
- Biodiversity
- Environment

EU: environmental legislation

EU policy agenda

Post Kyoto agreements:

- carbon-constrained industrial and agricultural developments?
- emission reduction targets (also for agriculture)?
- cap and trade policies with new (energy) markets for agriculture?
- energy production and climate neutral agricultural and livestock production?

Mitigation options

- Control Land Use change
 - Avoid deforestation & use organic soils and keep permanent grass
 - Intensification of animal production and pasture management
- Conservation and sequestration of C and N in cultivated soils
 - increase tree cover
 - pasture rotation and improved pasture species
- Enteric fermentation
 - productivity gains live stock
 - feed formulation & rumen control
- Manure management
 - balanced feeding, less methane and lowering N content
 - anaerobic digestion (methane production)
 - Balanced fertilization, manure and waste application (dosing, injection)

Mitigation options – outsite sector agriculture

....

Bio-energy and biobased materials (not agriculture perse)

Carbon sequestration in soils

[IPCC, 2005]

Mitigation CO₂ through soil management

Atmosphere

Combined food, fodder and energy system: future ecosystem service?

- Biomass hedges and crops
- Crop rotation
- Organic management
- Energy neutral

	Arable	SRC plot	Set-aside
	crops		
Inputs	5.7	2.6	0.7
on farm			
Inputs,	4.1	1.5	0.6
external			
Outputs		116.9	
Net	9.9	-112.8	1.4

Effects of soil management of N₂O emissions

Oenema, de Vries, Kuikman

The case for urine composition

- Diet affects urine and dung composition
- Dung composition affects NH₃ and N₂O emission
- Urine composition affects NH₃ volatilization
- Does urine composition affect N₂O emissions?
- Is mitigation possible by manipulating urine composition through rationing?

Controlling factors: urine patches

Effect of urine patches on soil-produced N₂O:

- up to 1000 kg available-N ha⁻¹ \leftarrow mineral N
- up to 20 mm moisture ← anaerobicity
- up to 2 pH units increase (urea hydrolysis) \leftarrow pH
- C from urine and soil organic matter ← available C

N₂O from urine patches in an 'ideal' world

Controlling factors: urine patches

[Van Groenigen, Kuikman, De Groot & Velthof, 2005, Soil Biol. Biochem. 37, 463-473]

Controlling factors: urine patches

[[]Van Groenigen et al., 2005, Plant & Soil 273, 15-27]

Urine composition - results

[Kool et al., 2006, Soil Biol. Biochem. 38, 1021-1027]

Urine composition - results

Cumulative N₂O emissions

[Van Groenigen et al., 2006]

Controlling N_2O – is it the soil or the urine?

Most promising options:
Avoiding dung patches
Avoiding compaction
No grazing after August?
Increasing hippuric acid

feasible?
other aromatic compounds?

it's the soil

and the urine....

Integrated approaches

Integrated assessment

- At policy, measure as well as process level
- Likely more effective if regionally explicit to account for range of agricultural systems and traditions
- Can we produce net energy and operate for climate neutral agricultural and livestock production?

Integrated assessment tool MITERRA-EUROPE

Based on:

- RAINS: gaseous emissio abatement techniques
- CAPRI: activity data
- Databases: activity data
- Newly developed: leachir and soil carbon

Three scales:

- EU-27
- Member states
- Regional (NUTS-2)
- Emissions:
- NH₃, N₂O, CH₄, NO₃ leaching, N and P balance and change in SOC

& surface waters

Effects of ammonia mitigation measures

Scenarios in MITERRA-EUROPE

- 1. Baseline, 2000
- 2. Mitigation measures current trend, 2020
- 3. Ammonia mitigation full implementation, 2020
- 4. Nitrate leaching mitigation full implementation, 2020
- 5. Ammonia + nitrate mitigation full implementation, 2020

[MITERRA-EUROPE]

Selected mitigation measures in EU-PICCMAT

- Catch crops
- Zero tillage
- Reduced tillage
- Residue management
- Optimising fertilizer application
- Fertilizer type
- Rotation species
- Adding legumes
- Agroforestry
- Grass in orchards and vineyards

Mitigation potential for Carbon

Mitigation potential for Nitrogen (N₂O)

Cover crops (Miterra Europe)

Optimizing fertilizer application (Miterra Europe)

N₂O emissions from arable and grass land

Hypothesis: optimization for C and N emissions required to avoid trade off and greenhouse gas swapping

Intensification agriculture

Conclusions

- Reducing GHG emissions is only one of many environmental constraints of farming (in the EU)
- Assessment is complex and effects not been tested in fields and await experimental work
- Measures that reduce N surpluses offer by far the best potential for reaching all environmental aims and prevent pollutions swapping
- Ultimately, all measures need to be feasible at the farm scale
- Awareness among farmers communities
- Agri complex may well be net energy producer
- Zero emission or 'climate neutral' agriculture is utopia

Thank you!

And colleagues: Jan Willem van Groenigen, Oene Oenema, Gerard Velthof, Jan Peter Lesschen, Rene Schils, John Porter and the PICCMAT team

